
The tool of thought for expert programming

R Interface Guide
Version 1.1

Dyalog Limited

Minchens Court, Minchens Lane
Bramley, Hampshire

RG26 5BH
United Kingdom

tel: +44(0)1256 830030
fax: +44 (0)1256 830031

email: support@dyalog.com
http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright 1982-2016

mailto:support@dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright 1982 – 2016 by Dyalog Limited.

All rights reserved.

Version 1.1

Revision: 20160726_110

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog

Limited, Minchens Court, Minchens Lane, Bramley, Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any

implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this

publication without notification.

SQAPL is copyright of Insight Systems ApS.

Array Editor is copyright of davidliebtag.com

UNIX® is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.

Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its affiliates.

Mac OS® and OS X® (operating system software) are trademarks of Apple Inc., registered in the U.S. and other countries.

All other trademarks and copyrights are acknowledged..

Contents

1 ABOUT THIS DOCUMENT . 1
1.1 Changes since version 1.0 ... 1
1.2 Limitations in RConnect 1.1 .. 1

2 INTRODUCTION . 2

3 A SAMPLE RCONNECT SE SS ION . 3

4 INSTALLATION AND INIT IALISATION . 6
4.1 Prerequisites ... 6
4.2 Adding R to the Windows PATH environment variable 6
4.3 Installing R and rscproxy ... 7
4.4 Packages .. 7
4.5 Running RConnect ... 8
4.6 Accessing R's Documentation ... 9

5 TRAN SFE RRIN G DATA BE TWEE N APL AND R . 10
5.1 Compatible R Arrays and Lists ... 10
5.2 R Objects ... 10
5.3 R data.frame objects ... 11
5.4 Constructing R objects .. 12
5.5 Letting R do the formatting ... 13

6 RCONNE CT FUNCTIONS . 14
6.1 init ... 14
6.2 save ... 14
6.3 get ... 15
6.4 put ... 15
6.5 execute .. 15
6.6 format ... 16

7 MORE ABOUT RCONNECT OBJE CTS . 18
7.1 Robject and RDataframe ... 18
7.1.1 Constructors .. 19
7.1.2 The Value property ... 19
7.1.3 The attributes property ... 20
7.1.4 The attr property ... 20
7.1.5 Changing Class ... 21
7.2 Special Classes ... 21
7.2.1 Renvr ... 21
7.2.2 Rname ... 21
7.2.3 Rcall ... 22
7.2.4 Rexpr ... 22
7.2.5 Rfunc ... 22

8 PERFORMAN CE TIPS . 24

APPEN DIX A R FOR APLE RS . 25
A.1 Assignment and Vector Arithmetic ... 25
A.2 Operators .. 26
A.3 Arrays .. 27
A.4 Functions on Arrays... 28
A.5 Data Frames .. 29
A.6 Indexes .. 30
A.7 Defined Functions ... 32

APPEN DIX B REFE REN CES FOR R . 34

 Dyalog APL R Interface Guide

1 About This Document

This document describes how to install and use RConnect, the interface between Dyalog
APL and R.

The information provided in this document is not a tutorial for R and does not include
comprehensive information on the capabilities and syntax of R – only some basics are
covered. See Appendix B for a list of suggested documentation and references that expand
on this.

Dyalog only supports RConnect on Unicode editions of Dyalog APL. Version 1.1 requires
Dyalog version 14.1 or later, and is supported on Microsoft Windows, Linux and Mac OS.

RConnect is supported on the same levels of Windows, Linux and OS as Dyalog APL.
However, some features of R are operating-system dependent, so may not work on your
platform.

It is assumed that the reader has a reasonable understanding of Dyalog. No prior
knowledge of R is required.

1.1 Changes since version 1.0
• Support has been added for OS X (Yosemite 10.10.x)
• The rscproxyLin class/driver has been renamed rscproxyUNIX to reflect

support for both Linux and OS X
• Rconnect will now generate an error if run under Classic Dyalog
• Rconnect now works with R 3.1.2 on Windows
• A number of minor bug fixes
• The example in section 5.5 now works

1.2 Limitations in RConnect 1.1
RConnect is still work in progress, and a number of limitations still apply:

• The R help system does not work on Linux or Mac OS; a browser window
opens when help() is called, but the window is not populated with help text

• Under Linux and OS X graphics windows are not resizable and cannot be
closed. To close a graphics window call graphics.off()

 R Interface Guide 2

2 Introduction

R is an open-source integrated programming language and software environment for
statistical computing and graphics. The R language is widely used among statisticians and
data miners for developing statistical software and data analysis, and the popularity of R
has increased substantially in recent years.

RConnect, the interface between Dyalog APL and R, makes the R environment an
extension of the active APL workspace. With RConnect:

• R functions can be called directly from within a Dyalog APL session, passing APL
arrays as arguments and receiving APL arrays as results.

• the contents of APL variables can be transferred to and from equivalent R
variables.

• simple R arrays and lists (without named items) can be converted directly to
equivalent APL arrays.

• the most widely used R classes, such as list (with named items), table, data.frame
and ts (timeseries) can be converted to corresponding APL classes to make them
easier to use from within the APL workspace.

• R classes that are not directly supported in APL are encapsulated in an R.object
class, making it possible to inspect and manipulate the attributes of the object
from within the APL workspace.

RConnect enables APL users to extend APL applications by either utilising existing R skills
or acquiring new skills and making use of the large – and rapidly expanding – collection of
statistical and analytical packages that are continuously being added to R by existing users.

 R Interface Guide 3

3 A Sample RConnect Session

This chapter comprises examples that provide an overview of the capabilities of the
RConnect interface. It is assumed that R and any required packages have been installed –
for details on how to perform the required installations, see section 4.1.

First, load the RConnect workspace:

)load rconnect
rconnect saved Thu Mar 06 21:35:43 2015

The next step is to create an instance of the R class and initialise it. This is done in two
steps, making it possible to set options before making the connection to R.

 r←⎕NEW R
 r.init
RConnect initialized

R expressions can now be executed using the function r.x. Results are returned as APL
arrays. The result of r.x is shy, so the explicit ⎕← is required to display the output in the
session.

 ⎕←r.x '1+2' ⍝ Add two scalars
3

 ⎕←r.x 'c(1,2,3)*c(10,20,30)' ⍝ Make & multiply 2 lists
10 40 90

 ⎕←r.x 'matrix(1:12,3)' ⍝ Matrix with 3 rows from 1:12
1 4 7 10
2 5 8 11
3 6 9 12

 ⎕←r.x 'matrix(1:12,3,byrow=TRUE)' ⍝ Row major as APL
1 2 3 4
5 6 7 8
9 10 11 12

So far this is nothing that could not be done (more easily) using APL. However, R's libraries
of built-in statistical and analytical functions are enormous, starting with simple ones like:

 ⎕←r.x 'rnorm(10)'
¯1.201069489 0.3935029841 ¯0.3554851217 0.01064592962
 1.29373234 ¯0.4275097121 ¯0.6812233687 0.5906630588
 ¯0.5442389192 1.531940771

We can invoke R’s on-line help system by calling the help function:

 r.x 'help(rnorm)'

The help will appear in the default browser as shown in Figure 1.

 R Interface Guide 4

Figure 1. Example help screen (called for rnorm)

Armed with the above knowledge, we can generate 10 numbers with a mean of 100 and a
standard deviation of 1, by passing additional parameters to the rnorm function. We name
the result “normAPL” in the AP workspace and format the output to 1 digit:

 1⍕10↑normAPL←r.x 'rnorm(1000,100,1)'
 100.4 99.1 100.2 100.4 101.8 100.8 98.8 101.2 99.9 100.2

Variables can be transferred to an R variable using r.p (put – from APL to R) and retrieved
again using r.g (get – from R to APL). In this case we will transfer the data back to an R
variable called normR, and call the summary function on it:

 'normR' r.p normAPL ⍝ Move data back to R

 1⍕10↑r.g 'normR' ⍝ Get it again, check it is the same
100.4 99.1 100.2 100.4 101.8 100.8 98.8 101.2 99.9 100.2

 ⎕←r.x 'summary(normR)' ⍝ Call summary on the R variable
[Min. 1st Qu. Median Mean 3rd Qu. Max.]
[96.99 99.33 99.97 100 100.7 103.1]

The r.x function also supports the direct transfer of parameters from the APL workspace:
If the expression to be executed contains one or more ⍵ (omega) symbols, and is followed
by array values, the values will be transferred via temporary variables and injected into the
statement. For example, we could call summary on our normAPL variable without first
transferring it to an R variable as follows:

 ⎕←r.x 'summary(⍵)' normAPL
[Min. 1st Qu. Median Mean 3rd Qu. Max.]
[96.99 99.33 99.97 100 100.7 103.1]

It is possible to transfer several arguments in a single call, as demonstrated in the
following example, which calls R's persp function to produce a perspective plot. The input
to this function is three arrays – the X, Y and Z co-ordinates (in this example, we use the
same values for X and Y):

 R Interface Guide 5

 x←¯10 10 {⍺[1]++\0,⍵⍴(|-/⍺)÷⍵} 50
 z←x∘.{{10×(1○⍵)÷⍵}((⍺*2)+⍵*2)*.5}x
 expr←'persp(⍵,⍵,⍵,theta=30,phi=30,expand=0.5,'
 expr,←'xlab="X",ylab="X",zlab="Z")'
 r.x expr x x z ⍝ Use x for both x and y co-ordinates

This displays the plot shown in Figure 2 in an R Graphics window.

Figure 2. Plot generated from Dyalog APL session using RConnect

The get more information on the R “persp” function, you could call help(persp) using r.x.

To close the window containing the plot, call

 r.x'graphics.off()'

 R Interface Guide 6

4 Installation and Initialisation

This chapter describes how to install and initialise R for use with RConnect.

4.1 Prerequisites
The following software must be installed prior to using RConnect 1.1:

• Dyalog APL Unicode edition version 14.1 or later
• R version 3.1 or later (32-bit for user with 32-bit APL, 64-bit for 64-bit APL)
• The rscproxy R package
• The gtools R package is required by the r.f function
• The examples used in the previous section make use of the rnorm function from

the stats package and the persp function from the graphics package.
• On Mac OS the RConnect workspace requires otool in order to locate the various

R files. otool is not part of the standard Mac OS installation; type otool in a
command window for more information on installing this command.

4.2 Adding R to the Microsoft Windows PATH environment variable
On Windows it is necessary to add the R binary file directory to the system environment
variable PATH. Remember that this will need to be updated if a new version of R is
installed. There have been reports that it has been necessary to add the PATH variable
(with the R directories included) to the user environment variable too.

To add R to the path on Windows:

1. Open the Control Panel and select System.

2. Under Control Panel Home, select Advanced system settings.

The System Properties window is displayed.

3. Navigate to the Advanced tab and click Environment Variables….

4. In the System variables list, select the Path variable and click Edit….

5. Add <path to R>\bin\i386 (and/or x64) to the beginning of the Variable value
(unless it is already present in the path) and click OK. Include the trailing “\”and
include the path separator, “;”.
Typically the path to R is C:\Program Files\R\R-3.1.3\bin\x64\

 R Interface Guide 7

4.3 Installing R and rscproxy
R is included in a number of Linux distributions so can be installed using the Linux package
manager included in your distribution. For Windows, OS X and other Linux distributions R
can be downloaded from http://www.r-project.org/. Full installation instructions are
included on this website.

To install rscproxy:

1. Start R. If R is started with administrator/root/super user privileges it will be
possible to install rscproxy into the system R packages area. If run without such
privileges rscproxy will have to be installed in a user packages area.

• Linux start a console window and run R
• Windows: double click on the R shortcut
• OS X: either click on the R application or open a command window and

type R

2. on OS X it is recommended to set the language to en_US.UTF-8
system("defaults write

org.R-project.R force.LANG en_US.UTF-8")

3. Run
install.packages("rscproxy")

and follow the instructions.

Note: when copying and pasting the above instruction(s) ensure that the quotes
entered into R are double quotes, not smart quotes !

4. Run
installed.packages()

to check that rscproxy is included in the list

4.4 Packages
A core set of packages is installed with R. These comprise a basic set of abilities, datasets
and standard statistical and graphical functions. Additional packages that extend R's
capabilities through more specialised statistical techniques, graphical devices, reporting
tools and so on, can be downloaded from various repositories, including:

• The Comprehensive R Archive Network:
http://cran.r-project.org/

• Crantastic
http://crantastic.org/packages
(a community site for R packages that includes user reviews)

• The Omega Project for Statistical Computing:
http://www.omegahat.org/

• Bioconductor:
http://www.bioconductor.org/packages/release/
(packages for analysis/comprehension of high-throughput genomic data)

http://www.r-project.org/
http://cran.r-project.org/
http://crantastic.org/packages
http://www.omegahat.org/
http://www.bioconductor.org/packages/release/

 R Interface Guide 8

Once a package has been downloaded and installed it needs to be loaded using the
library() command before it can be used by R.

Various R commands can be entered in the R Console (within the R user interface) to
manipulate packages. A few examples are listed below, see the R documentation for more
information.

• library()
lists the contents of the <path to R>\library directory (the installed packages)

• library(<package name>)
loads the specified package

• install.packages('<package name>')
downloads and installs the specified package from the Comprehensive R Archive
Network (http://cran.r-project.org/)

• update.packages('<package name>')
updates the specified package from the Comprehensive R Archive Network
(http://cran.r-project.org/)

• search()
lists the packages that are currently loaded

• help(package="<package name>")
opens the online help information for the specified package

4.5 Running RConnect

1. Start Dyalog APL.

2. Copy or load the rconnect workspace:
)load rconnect

3. Create a new instance of the R class:

 r←⎕NEW R

Throughout this document, r is used to denote an instance of the R class.

4. Establish the connection to R:
 r.init
RConnect initialized

5. If step (4) is unsuccessful, then the path to the driver that will be used should be
set before calling r.init:
 on Microsoft Windows:
 r.setdriver 'rscproxyWin' '<path>\R\R-<vn>\'

 on Linux or Mac OS:

http://cran.r-project.org/
http://cran.r-project.org/

 R Interface Guide 9

 r.setdriver 'rscproxyUNIX' '<path to R>' '<path
to rscproxy>'

The functions r.save, g.g, r.p, r.x and r.f can now be used (see Chapter 6).

Although instances or the R object can be saved in an APL workspace, the connection to R
is broken if the workspace is saved and reloaded. This means that the connection to R
needs to be re-established by calling the r.init function each time the workspace is
loaded. If the r.save function has been used (see Section 6.2), then the initialisation also
restores the previous R session's state (for example, variables).

4.6 Accessing R's Documentation
R has online documentation that, once enabled, should be able to be opened from within
an APL session using the help(...) function; calling this function should result in a
browser window being opened which displays the relevant help text.

On UNIX-based operating systems this does not currently work.

 R Interface Guide 10

5 Transferring Data between APL and R

5.1 Compatible R Arrays and Lists
Many values returned to APL by r.x or r.g are R structures which have a direct
equivalent in APL. In particular, many instances of the R list and array classes can be
converted to APL arrays:

• A list in R maps to a nested array in APL
In R, a list is a vector of elements each of which can contain any type of R object and,
optionally a names (item names) attribute.

• An array in R maps to a simple array in APL
In R, an array is a vector of elements with attributes dim (dimensions) and, optionally,
dimnames (dimension names).

The mapping to APL arrays is only possible if the R list has no item names, and an R array
has no dimension names. R lists and arrays with additional attributes, and all other R
classes, are mapped to instances of the Robject or Rdataframe classes, which are
described in the next section.

Numeric types, including Booleans and complex numbers are converted as one would
expect, and R strings are converted to enclosed character vectors. R strings are converted
to enclosed character vectors.

R does not support the decimal floating point: RConnect converts these into double
precision floating point types when transferring them from an APL session into an R
session. This conversion can fail if the values are outside the range of double precision
floating point, and a loss of precision is also possible. Values will remain as double
precision floating point types when transferred back to the APL session.

R has a richer set of values used for missing or invalid values, for which there is no exact
equivalent in APL: The R constants NULL (missing value), NA (not available), NaN (not a
number) and Inf (infinity) are all converted to ⎕NULL in APL. On the reverse journey, all
⎕NULLs are converted to NA.

5.2 R Objects
R is a rather loosely organised "object-oriented" system, where variables can have
attributes and one of the attributes is called class. The R language does not enforce any
relationship between class and the set of attributes that an object has, but the behaviour
of much of the R framework is driven by conventions associated with the attributes that an
object of a particular class is expected to have.

RConnect considers all objects to be instances of the same Robject class. For example let
use retrieve and examine "co2", a sample dataset included with R, which contains monthly
data from 1959 to 1997 – this is an R object with class "ts":

 R Interface Guide 11

 ⎕CLASS co2←r.g 'co2' ⍝ The APL class is:
 #.Robject

 ⎕←co2 ⍝ Default display form
 [R ts - 468 observations]
 Frequency 12
 Start 1959 1
 End 1997 12

The Robject class has three properties that can be used to get at the contents (or modify
them): attributes is a 2-column matrix containing attribute names and values:

 co2.attributes ⍝ List attributes and values
 class ts
 tsp 1959 1997.916667 12

There is a keyed property called attr which can be used to extract values of named
attributes:

 co2.attr[⊂'tsp'] ⍝ Extract one attribute value
 1959 1997.916667 12

Finally, the Value property contains the data:

 8↑co2.Value
315.42 316.31 316.5 317.56 318.13 318 316.39 314.65

The Value property is also the default property, which means that the object can be
indexed directly, and the entire contents can be produced using monadic ⌷:

 co2[2 4 6]
316.31 317.56 318

 ⍴⌷co2
468

As we have just seen, the ts class is one of several commonly used R classes that RConnect
recognises, and attempts to set a useful default display format. We saw another example
of RConnect providing formatting when we used the summary function in the previous
section: RConnect recognised that the result is a special kind of table object named
summaryDefault and set the display form to be something similar to what R itself would
have displayed:

 ⎕←r.x 'summary(⍵)' normAPL
[Min. 1st Qu. Median Mean 3rd Qu. Max.]
[96.99 99.33 99.97 100 100.7 103.1]

The set of R classes that APL provides special formatting for will probably continue to grow
as more cases where RConnect could help with the display of R objects in APL are
discovered. Please contact apltools@dyalog.com if you would like to suggest a display
form for a frequently-used R class.

5.3 R data.frame objects
A very common data type used by R is the data.frame, which is accepted as input by many
of the statistical functions. RConnect converts data.frame values to instances of

mailto:apltools@dyalog.com

 R Interface Guide 12

Rdataframe, a class which has the same properties as Robject – the main difference being
that the Value property is a matrix with one column per data series:

The following example show the construction (using R language statements) and the
display of a data.frame. Note that R also uses the assignment arrow, but unlike APL spells
it using two symbols, “<-“:

 r.x 'age <- 18:20' ⍝ Generate ages in R
 r.x 'height <- ⍵' (76.1 77 78.1) ⍝ heights from APL
 r.x 'village <- data.frame(age=age,height=height)'
 ⎕←v←r.g 'village' ⍝ Display the data.frame in APL
 [R data.frame - 3 rows]
 age height
 18 76.1
 19 77
 20 78.1

 v.attributes ⍝ display with]boxing on
┌─────────┬────────────┐
│class │data.frame │
├─────────┼────────────┤
│row.names│1 2 3 │
├─────────┼────────────┤
│names │┌───┬──────┐│
│ ││age│height││
│ │└───┴──────┘│
└─────────┴────────────┘

 v.Value
18 76.1
19 77
20 78.1

5.4 Constructing R objects
Because R objects all have the same general structure, you can manufacture any R object
from APL by setting the correct attributes – one of which will be the R the class name. R
attribute names are R strings (enclosed character vectors in APL), and attribute values can
be any R object.

Be careful: RConnect does very little validation of the attribute names and values: you can
probably cause crashes in R functions if you do not adhere to the expected conventions,
which you can only learn about by reading the documentation for each class or function.

The following example creates an R object of class ts:, containing one year of monthly
data. The tsp property is expected to contain the start and end dates, and the frequency:

 tsp←2014 (2014+11÷12) 12 ⍝ From month 0 to 11 of 2014
 attributes←2 2⍴'class' 'ts', 'tsp' tsp
 value←?12⍴100
 myts←⎕NEW Robject (value attributes)

 'myts' r.p myts

 r.f 'myts'
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2014 53 10 66 42 71 92 77 27 5 74 33 64

 R Interface Guide 13

 ⎕←r.x 'summary(myts)'
[Min. 1st Qu. Median Mean 3rd Qu. Max.]
[5 31.5 58.5 51.17 71.75 92]

The same is possible for data.frame objects:

 names←'names' ('xx' 'square')

 mydf←⎕NEW Rdataframe (((⍳12)∘.*1 2) names)
 'mydf'r.p mydf

 ⎕←r.x 'summary(mydf)'
 [R table - 6 rows]
 V1 V2
 Min. : 1.00 Min. : 1.00
 1st Qu.: 3.75 1st Qu.: 14.25
 Median : 6.50 Median : 42.50
 Mean : 6.50 Mean : 54.17
 3rd Qu.: 9.25 3rd Qu.: 85.75
 Max. :12.00 Max. :144.00

5.5 Letting R do the formatting
For certain types of objects or arrays, the APL display may not be what you want,
especially if you are a seasoned R user:

 ⎕←l1←r.x 'list(A=1,B=2,C=3)'
[R list: 3 : names]

The default display tells you that there is a list with 3 elements and there is a names
attribute. This may not be terribly useful to you. Perhaps RConnect will learn to do better,
but until then you need to look at the properties to find out more about the result:

 l1.attr[⊂'names'] ⍝ Extract the names attribute
 ABC

 l1.Value ⍝ See the values
1 2 3

The function r.f uses the capture.output method of the gtools package (which must be
installed), and returns the output that the R system itself would generate, as a character
vector:

 ⎕←r.f 'list(A=1,B=2,C=3)'
$A
[1] 1

$B
[1] 2

$C
[1] 3

 R Interface Guide 14

6 RConnect Functions

Each instance of the R class provides six functions for use in an APL Session window:

• init – syntax: msg←r.init (see Section 6.1)
• save – syntax: msg←r.save (see Section 6.2)
• get – syntax: <obj>←r.g '<expr>' (see Section 6.3)
• put – syntax: <name> r.p <obj> (see Section 6.4)
• execute – syntax: {obj}←r.x [(⍬)]'<expr>' [values] (see Section 6.5)
• format – syntax: <out>←r.f '<expr>' (see Section 6.6)

6.1 init
Syntax: msg←r.init

Initalises the RConnect instance.

On successfully establishing a connection to R, returns the message "RConnect initialized".
If any packages/variables are also loaded (see Section 6.2), then the message "R
Workspace loaded'' is also returned.

 r←⎕NEW R
 r.init
RConnect initialized

If the error message “Unable to connect to R, no suitable driver” is displayed, then you
should verify:

1) Whether the rscproxy package is installed.
2) If rscproxy is installed, try using the setdriver function described in the installation

section to provide the location of the rscproxy; RConnect may be having trouble
locating the library.

If you are still unable to initialise RConnect, contact support@dyalog.com, providing
information about the versions (including 32/64 bit architecture) for each of:

• The operating system
• Dyalog APL
• R (please also specify the location of your rscproxy library)

6.2 save
Syntax: msg←r.save

Records all packages loaded and saves all compatible objects in the root environment
(.GlobalEnv in R). Next time the r.init function is called, these packages and
objects/variables are loaded into the root namespace. Incompatible objects are not saved.

mailto:support@dyalog.com

 R Interface Guide 15

On successfully saving the workspace, returns the message "R Workspace saved'',
otherwise returns the message "R Workspace NOT saved".

 r.save
R Workspace saved

6.3 get
Syntax: <obj>←r.g '<expr>'

Sends the expression <expr> to R, where it is executed, and brings the result back to the
APL session. The expression must be a single character string representing a valid R
expression.

For example:

 r.g '4+5/2'
6.5

 r.g 'co2'
[R ts - 468 observations]
 Frequency 12
 Start 1959 1
 End 1997 12

6.4 put
Syntax: '<name>' r.p <expr>

Creates or updates the variable <name> in the R session, using the result of the APL
expression <expr> as the new value. The value must be compatible with R, in other
words it must be a simple or nested array of numeric, complex, character or Robject type.

For example:

 'abc' r.p (⍳5)(⍳3)
 r.g 'abc'
 1 2 3 4 5 1 2 3

6.5 execute
Syntax: {obj}←r.x [(⍬)] '<expr>' [values]

Executes the expression <expr>.

If there is no ⍬ as the first argument, then the result of <expr> is retrieved and returned
as a shy result r (if the result is not compatible, then an error is thrown). If ⍬ is present,
then the result of the expression is not retrieved and a shy ⎕NULL is returned.

The expression must be a character vector containing a valid R expression. It can contain
multiple embedded ⍵ characters as placeholders for arguments. If <expr> contains any
embedded ⍵ characters, then arguments must be specified as additional elements
following the expression. These values are passed to R as temporary variables using
generated names, and replace each occurrence of ⍵ in the order in which they are

 R Interface Guide 16

specified. If there are more arguments (⍵) required then are available, then the
replacements will recycle as much as required.

For example:

 r.x '3+4+2'
 ⎕←r.x '3+4+2'
9

 r.x ⍬ '3+4+2'
 ⎕←r.x ⍬ '3+4+2'
[Null]

 ⎕←r.x 'mean(⍵)+⍵' (⍳10) (5)
10.5

 ⎕←r.x ⍬ 'a<-mean(⍵)+⍵' (⍳10) (5)
[Null]

 r.g 'a'
10.5

 r.x 'help(mean)'
(launches R documentation for Arithmetic Mean in the default web browser)

6.6 format
Syntax: <out>←r.f '<expr>' ⍝ requires the gtools package

Sends the expression <expr> to R, where it is executed and formated by R. The textual
representation is returned to APL session.

This function calls the capture.output method of the gtools package to format the R object
and uses the implicit argument ⎕PW for wrapping purposes (passed as the width option).

For example:

 r.f '"asdf"'
[1] "asdf"

 r.f '1:10'
[1] 1 2 3 4 5 6 7 8 9 10

 r.f 'beaver1[1:8,]'
 day time temp activ
1 346 840 36.33 0
2 346 850 36.34 0
3 346 900 36.35 0
4 346 910 36.42 0
5 346 920 36.55 0
6 346 930 36.69 0
7 346 940 36.71 0
8 346 950 36.75 0

This can be compared with the result of using r.x on the same arguments, where the
formatting is performed by RConnect, in APL:

 R Interface Guide 17

 ⎕←r.x '"asdf"'
asdf

 ⎕←r.x '1:10'
1 2 3 4 5 6 7 8 9 10

 ⎕←r.x 'beaver1[1:8,]'
 [R data.frame - 8 rows]
 day time temp activ
 346 840 36.33 0
 346 850 36.34 0
 346 900 36.35 0
 346 910 36.42 0
 346 920 36.55 0
 346 930 36.69 0

Apart from the fact that r.x has a shy result, the first two calls resulted in simple APL
arrays. The third result was recognised as a data.frame and was, therefore, formatted by
the Rdataframe class (which decided to display "..." after the first six rows).

 R Interface Guide 18

7 More about RConnect Objects

This section provides a more detailed description of the Robject and Rdataframe
classes which are used to represent R objects within an APL workspace. It also describes
classes which are used to represent R names, functions and expressions, in such a way that
these can be invoked from APL.

The full set of classes provided by the RConnect interface is:

Class Name Description

R Each instance is a separate R session

Robject General encapsulation of any R object

Rdataframe Almost identical to Robject but with a little additional
functionality to make R data.frame objects easier to use

Rname Represents a name in the R session

Rfunc Representation of an R function (argument list, function
body and environment)

Rcall Representation of an invocation of an R function,
containing the function (name and argument values)

Rexpr An R expression, as a character vector

Renvr An APL representation of an R “environment"

Some R objects, such as an externalptr (external pointer object), cannot be
represented in APL. RConnect cannot transfer these objects, or any object which contains
such an “unsupported” object as an attributes, to Dyalog APL.

For detailed explanations of the different objects available in R, see the R Language
Definition document in the R documentation set at http://www.r-project.org/.

7.1 Robject and RDataframe
As described in section 5, RConnect tries to map R data to APL arrays if this is possible.
Generally speaking, R lists and arrays with no additional attributes can be mapped.

The Robject and Rdataframe are two virtually identical classes, which encapsulate R
variables that have attributes, and cannot therefore be completely mapped into nested
arrays containing numbers and characters in APL. The data content of such an object is
stored in the Value property (see Section 7.1.3), while the attributes are in a two-column
matrix of (name, value) pairs, called attributes (see Section 7.1.3). The attribute
matrix can also be accessed via a keyed property named attr (see Section 7.1.4).

http://www.r-project.org/

 R Interface Guide 19

7.1.1 Constructors
Objects are instantiated from the Robject class using one of three constructors,
depending on whether zero, one or two arguments are supplied:

• the first argument sets the value. The default is ⎕NULL.
• the second argument sets the attributes. The default is 0 2⍴0.

For example:

 ⎕NEW R.object ⍝ No arguments
#.[object]

 ⎕NEW Robject(,⊂2 2⍴⍳4) ⍝ One argument
[R object: 2x2 :]

The default display form of an instance of Robject displays the R class name (“object”),
the shape of the Value property (2x2), and the list of attribute names (empty).

 atts←2 2⍴'class' 'ts' 'tsp' (2014 (2014+11÷12) 12)
 myts←⎕NEW Robject ((?12⍴100) atts) ⍝ Two arguments

 'myts' r.p myts

 r.f 'myts'
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2014 53 10 66 42 71 92 77 27 5 74 33 64

 ⎕←r.x 'summary(myts)'
[Min. 1st Qu. Median Mean 3rd Qu. Max.]
[5 31.5 58.5 51.17 71.75 92]

The constructors for Rdataframe are identical to those for Robject; the main
advantage of the Rdataframe object is that you can create a data.frame without specifying
the class name:

 names←'names' ('xx' 'square')
 mydf←⎕NEW Rdataframe (((⍳12)∘.*1 2) names)

7.1.2 The Value property
The value of each variable within the object can be obtained or set using the Value
property of any instance of the Robject or Rdataframe class:

For example:

 obj←⎕NEW Robject(,⊂(2 2⍴⍳4))
 obj.Value
1 2
3 4

 obj.Value←4
 obj.Value
4

The Value property is defined as the default property of the object, which means that it
can be accessed by indexing the object using square bracket indexing or the index function
⌷. For example:

 R Interface Guide 20

 ⌷obj ⍝ Returns the entire property
1 2
3 4

 obj[1;]
1 2

 obj[2;1]←7
 ⌷obj
1 2
7 4

7.1.3 The attributes property
The attributes property returns the attributes attached to the object as a 2-column
matrix of (name value) pairs. For example:

 myts.attributes ⍝ with v14]box on
┌─────┬───────────────────┐
│tsp │2014 2014.916667 12│
├─────┼───────────────────┤
│class│ts │
└─────┴───────────────────┘

Although all constructors accept an attribute matrix as an optional argument,
attributes is read only once the object has been created. The keyed attr property
must be used to change attribute values.

7.1.4 The attr property
The attr property is keyed, which means it can be used to retrieve and sets attributes,
referring to them by name. For example:

 obj←⎕NEW Robject ((2 2⍴⍳4) ('akey' 'itsvalue'))
 ⌷obj ⍝ Value is the default attribute
1 2
3 4

 obj.attr[⊂'akey'] ⍝ A single name must be enclosed
┌────────┐
│itsvalue│
└────────┘

 obj.attr['akey' 'dim']
┌────────┬───┐
│itsvalue│2 2│
└────────┴───┘

dim is one of the special attributes that is widely used witin R. Where relevant, RConnect
will compute these attributes on demand, validate them when set, and sometimes act
upon them. For example, if dim is set, this corresponds to a “reshape” in APL:

 obj.attr[⊂'dim']←4 ⍝ Change shape
 ⌷obj
1 2 3 4

Other “special” attributes are comment, dim, dimnames, names, row.names and tsp.

 R Interface Guide 21

7.1.5 Changing Class
Note that the class attribute of cannot be changed directly. Instead, a new object of the
required class must be instantiated from the Robject class using the appropriate
constructor (see section 7.1.1).

7.2 Special Classes
In addition to Robject and Rdataframe, which cover R variables, RConnect provides a
set of classes which are used to represent R expressions, functions, function calls and
execution environments.

The special attributes (dim, dimnames, etc) mentioned in section 7.1.1 do not apply to
the special classes. All of the objects have a constructor which allows you to set an
attribute matrix, but there are currently no attributes with special meanings (however, you
can always set and read attributes for your own purposes).

7.2.1 Renvr
R “environments” are similar to APL namespaces: They contain a collection of named R
objects and a reference to a parent environment. Functions can be invoked within a
particular environment, and many R function take an environment as a parameter. The
Renvr class provides an APL representation of an R namespace, which can be modified in
APL and transferred back to R. The following example creates a group of nested
environments in R, using the list2env function which converts an R list to an
environment:

 r.x 'P1<-list2env(list(Name="Widget",Price=42))'
 r.x 'P2<-list2env(list(Name="Thingy",Price=99))'
 r.x 'Catalog<-list2env(list(P1=P1,P2=P2))'
 cat←r.g 'Catalog' ⍝ retrieve it into APL

 cat.Value ⍝ The Value property is a namespace
#.Renvr.[Namespace]
 cat.Value.⎕NL -9 ⍝ Contains 2 objects
 P1 P2
 cat.Value.P1.Value.Price
 42

 (⌷cat).(⌷P1).Name ⍝ Value is the default property
 Widget

It is also possible to manufacture an R environment from a namespace:

 ns←⎕NS ''
 ns.(Name Value)←'Dims' 88 ⍝ A Danish widget
 re←⎕NEW Renvr ns
 'P3' r.p ⎕NEW Renvr ns

 (r.g 'P3').(Value.Name Value)
 Dims 88

7.2.2 Rname
The Rname class provides a container for a name in the R workspace. The Value property
of an instance of Rname contains a character vector which is the name of the R variable.

 R Interface Guide 22

An instance of Rname can be passed as a parameter to the R eval function in order to
retrieve the value. For example:

 'a' r.p 1 4 3 5 ⍝ Define a variable in R
 ⎕←an←r.g 'as.name(''a'')' ⍝ Extract it into an Rname
[R name: a]

 an.Value
a

 ⎕←r.x 'eval(⍵)' an ⍝ Pass back to R to get the value
1 4 3 5

The Rname class is perhaps not particulary useful on its own, as a value can easily be
retrieved using the r.g function. However, an Rname is an important component of an
Rcall, which is described in the next section.

7.2.3 Rcall
The Rcall class corresponds to the call class in R, and makes it possible to represent a
complete call to an R function, including arguments, as a single object. The argument
values can be modified and the call can be repeated. The Value property of an instance
of RCall is a vector, where the first element is an instance of Rname containing the
function name, and subsequent elements are the arguments.

For example:

 r.x ⍬ 'cl <- call("round", 10.5)' ⍝ Create a call
 r.f 'cl'
round(10.5)

 ⎕←cl←r.g 'cl'
[R call: round (1 argument)]

 ⎕←r.x 'eval(⍵)' cl
10

 ⎕←cl.Value[2]←⊂0.1×?10⍴100 ⍝ Set a different value
5.2 8.4 0.4 0.6 5.3 6.8 0.1 3.9 0.7 4.2

 ⎕←r.x 'eval(⍵)' cl ⍝ Repeat the call
5 8 0 1 5 7 0 4 1 4

7.2.4 Rexpr
A Rexpr is an R expression. The Value is restricted to a character string type -
representing the R code. The object can be passed to the R eval function for evaluation.
For example:

 ⎕←r.x'eval(⍵)' (⎕NEW Rexpr(,⊂'sqrt(2+1:2-1i)'))
1.755317302J¯0.2848487846 2.015329455J¯0.2480983934

7.2.5 Rfunc
The Rfunc class makes it possible to represent an R function as an APL object. The
Value property contains the body of the function, and environment a reference to the
functions environment. For example:

 R Interface Guide 23

 norm←r.x 'norm'

 norm.Value
function (x, type = c("O", "I", "F", "M", "2"))
{
 if (identical("2", type)) {
 svd(x, nu = 0L, nv = 0L)$d[1L]
 }
 else .Internal(La_dlange(x, type))
}

 norm.environment
getNamespace("base")

The Rfunc class makes it straightforward to define R functions from APL:

 body←'function(arg1, arg2)',(⎕UCS 13),'arg1+arg2'
 add←⎕NEW Rfunc (,⊂body)

 add.Value
function(arg1, arg2)
arg1+arg2

 'add' r.p add
 ⎕←r.x 'add(3,4)'
7

The constructors for Rfunc allow you to provide an environment as the second optional
argument, and an attribute as the third. If you provide an instance of an Renvr, this will
be transferred together with the function when you use r.p. Alternatively, you can use
the R environment method to set the environment of a function, if the environment
already exists in R.

In the following example, we define a function which depends on a global variable called
“basevalue”, and execute it in different environments:

 body←'function(arg1)',(⎕UCS 13),'arg1+basevalue'
 add←⎕NEW Rfunc(,⊂body)
 'add'r.p add ⍝ Transfer the function
 'basevalue' r.p 42 ⍝ Give the global a value

 ⎕←r.x 'add(1)'
43

 (E1←⎕NS'').basevalue←99 ⍝ Create a namespace
 'E1' r.p ⎕NEW Renvr E1 ⍝ Save as R environment

 r.x 'environment(add)<-E1' ⍝ Set environment of the fn
 ⎕←r.x 'add(1)' ⍝ It now picks up the global from E1
100

 R Interface Guide 24

8 Performance Tips

Each call to the R interface has a cost; you can typically perform 20-50 calls per second,
depending on your hardware and software. Data transfer rates are typically measured in
megabytes per second, when transferring large arrays. If you need to make a large number
of calls to R functions, each with a relatively small argument, it may be worth the effort to
reduce the number of calls to R by writing an R function containing a loop, and transfer all
the arguments and results in a single call.

In the following example, we show how to use this technique to generate one random
number from each of thousands of beta distributions; each element of the result requiring
a separate call to the “rbeta” function. We can do this by making 1000 calls via r.x as
follows:

 shape1←?1000⍴10
 shape2←?1000⍴10
 r.x 'set.seed(123456)'
 4↑dist1←{r.x (⊂'rbeta(1,⍵,⍵)'),⍵}¨shape1,¨shape2
0.4358236934 0.839276234 0.6917617888 0.412594559

On the author’s laptop, it takes roughly 25 seconds to make the 1,000 calls above. We can
speed this up by almost three orders of magnitude using a loop on the R side. To do this,
we create a character vector containing the body of the R function, create an instance of
Rfunc containing the function, use r.p to move it to the R session, and call it:

 ⎕←r_fn_body ⍝ Display function definition
function(alpha,beta) {
for (i in 1:length(alpha))
 alpha[i]<- rbeta(1,alpha[i],beta[i])
return(alpha)
}
 'rbetas' r.p ⎕NEW Rfunc (,⊂r_fn_body)
 r.x 'set.seed(123456)'
 4↑dist2←r.x 'rbetas(⍵,⍵)' shape1 shape2
0.4358236934 0.839276234 0.6917617888 0.412594559

 dist1≡dist2 ⍝ test that results are identical
1

On the author’s laptop, doing the loop in R takes 50-60 milliseconds, a speedup of about
500 times.

 R Interface Guide 25

Appendix A R for APLers

This appendix provides a brief overview of some of R's functionality and the syntax
necessary to achieve the required result. Where relevant, equivalent APL terminology and
syntax is also provided.

The default input prompt in the R Console is >. R code in this document that does not start
with this symbol is not an input.

A.1 Assignment and Vector Arithmetic
R only includes a limited set of function glyphs; other mathematical operations can be
performed using built-in named functions. For example, the R function to create a vector
from a set of values (R does not identify individual values as scalars but rather as single-
item vectors) is concatenation, written in R as c(). Scalar R functions are applied to each
element in a vector individually (pervasion in APL); scalar extension also works in R.

R's version of APL's left arrow glyph (<-) is used for assignment.

For a complete list of R's primitive functions, see the R Internals document in the R
documentation set at http://www.r-project.org/.

Vectors of real (non-integer) values are of type "double" in R; as with numeric vectors in
APL, these can be manipulated using a variety of mathematical functions:

> v<-c(2.1,3.6,1.8,2.12,.35) # create a vector v

> 2+v # add 2 to v
[1] 4.10 5.60 3.80 4.12 2.35

> v-1 # subtract 1 from v
[1] 1.10 2.60 0.80 1.12 -0.65

> 2*v # multiply v by 2
[1] 4.20 7.20 3.60 4.24 0.70

> v/2 # divide v by 2
[1] 1.050 1.800 0.900 1.060 0.175

> v+v # add v to v
[1] 4.20 7.20 3.60 4.24 0.70

> v^2 # square v
[1] 4.4100 12.9600 3.2400 4.4944 0.1225

where +, -, *, / and ˆ are the R symbols for addition (+), subtraction (-), multiplication
(×), division (÷) and power (*) respectively.

Built-in named functions allow more complex mathematical analysis to be performed on
double vectors in R:

http://www.r-project.org/

 R Interface Guide 26

> length(v) # ⍴v in APL
[1] 5

> sum(v) # +/v in APL
[1] 9.97

> max(v) # ⌈/v in APL
[1] 3.6

> sum(v)/length(v) # (+/v÷⍴v) in APL
[1] 1.994

> mean(v) # (+/v÷⍴v) in APL
[1] 1.994

> summary(v) # summarise vector v
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.350 1.800 2.100 1.994 2.120 3.600

Vectors of characters are of type "character" in R; as with character vectors in APL, some
of the functions that can be applied to vectors of numbers can also be applied to character
vectors.

> f<-c("b","b","a","b","a") # create a vector f

> summary(f) # summarise vector f
 Length Class Mode
 5 character character

A.2 Operators
The R operator tapply is, in APL terms, a monadic operator similar to Key (introduced in
Dyalog APL version 14.0):

> tapply(v,f,min) # ⍉f{⍺,⌊/⍵}⌸v in APL
 a b
0.35 2.10

In this example, the operand supplied to tapply comprises the set of items to be
grouped by key (the numeric vector v, as defined in Section A.1), the key to associate with
each item (the character vector f, as defined in Section A.1) and the function to apply to
each collection of items in v that have the same key in f (min).

The R operator outer performs like APL's outer product:

> outer(c(-2,2),v,"*") # ¯2 2∘.×v in APL
 [,1] [,2] [,3] [,4] [,5]
[1,] -4.2 -7.2 -3.6 -4.24 -0.7
[2,] 4.2 7.2 3.6 4.24 0.7

> outer(c(-2,2),v,"+") # ¯2 2∘.+v in APL
 [,1] [,2] [,3] [,4] [,5]
[1,] 0.1 1.6 -0.2 0.12 -1.65
[2,] 4.1 5.6 3.8 4.12 2.35

A function f can be defined and used as a replacement for the primitive function:

> f<-function(x,y) y^x # f←{⍵*⍺} or f←*⍨ in APL

 R Interface Guide 27

> outer(c(-2,2),v,f) # ¯2 2∘.f v in APL
 [,1] [,2] [,3] [,4] [,5]
[1,] 0.2267574 0.07716049 0.308642 0.2224991 8.163265
[2,] 4.4100000 12.96000000 3.240000 4.4944000 0.122500

A.3 Arrays
In R, vectors can be “bound” to create a matrix. The functions cbind and rbind bind the
specified vectors as columns and rows respectively and are, therefore, equivalent to
performing a lamination in APL on the [1.5] and [0.5] axes (assuming index origin 1).

> cbind(v,v) # v,[1.5]v in APL

 v v
[1,] 2.10 2.10
[2,] 3.60 3.60
[3,] 1.80 1.80
[4,] 2.12 2.12
[5,] 0.35 0.35

> rbind(v,v) # v,[0.5]v in APL
 [,1] [,2] [,3] [,4] [,5]
v 2.1 3.6 1.8 2.12 0.35
v 2.1 3.6 1.8 2.12 0.35

Although these examples only show two vectors being combined, more can be specified.

Another way to create an array is using the array function. This takes a source vector
and the shape of the resultant array as arguments, equivalent to performing a reshape (⍴)
in APL. Note that R populates arrays column-wise:

> array(v,c(2,2,2))
, , 1

 [,1] [,2]
[1,] 2.1 1.80
[2,] 3.6 2.12

, , 2

 [,1] [,2]
[1,] 0.35 3.6
[2,] 2.10 1.8

The matrix function produces a 2-dimensional matrix, and it takes a byrow parameter
which can be used to get the same order that ⍴ would in APL:

> matrix(v,3,byrow=TRUE)
 [,1] [,2]
[1,] 2.10 3.60
[2,] 1.80 2.12
[3,] 0.35 2.10

 R Interface Guide 28

R functions can be applied to a matrix (or higher-order array) by dimension:

> m<-array(1:6,c(2,3))

> m
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> apply(m,1,sum)
[1] 9 12

> apply(m,2,sum)
[1] 3 7 11

apply is similar – but not identical - to the APL axis operator. Apart from the dimension
numbering being different, apply produces a single result for each item on the identified
dimension.

R assigns dimension number 1 to the columns and 2 to the rows. The apply operator
produces the sum for each item of the dimension which is identified – the result is always a
vector. For a 3-dimensional array, a sum would produced for all the items in the first plane.

A.4 Functions on Arrays
Section A.3 showed how R can combine multiple vectors to form a matrix. Scalar extension
is also supported:

> m<-cbind(1,v) # m←1,[1.5]v in APL

> m
 v
[1,] 1 2.10
[2,] 1 3.60
[3,] 1 1.80
[4,] 1 2.12
[5,] 1 0.35

In Section A.1, scalar R functions were shown to apply to each element in a vector
individually (pervasion in APL); this is also the case with arrays:

> m^2 # m*2 in APL
 v
[1,] 1 4.4100
[2,] 1 12.9600
[3,] 1 3.2400
[4,] 1 4.4944
[5,] 1 0.1225

> m-m # m-m in APL
 v
[1,] 0 0
[2,] 0 0
[3,] 0 0
[4,] 0 0
[5,] 0 0

 R Interface Guide 29

Like APL, R functions can take arguments that are of different rank, for example, a vector
and a matrix as long as they are of compatible proportions:

> v*m # v×[1]m in APL
 v
[1,] 2.10 4.4100
[2,] 3.60 12.9600
[3,] 1.80 3.2400
[4,] 2.12 4.4944
[5,] 0.35 0.1225

For matrix multiplication, R uses %*%:

> v%*%m # v+.×m in APL
 v
[1,] 9.97 25.2269

> t(m)%*%m # (⍉m)+.×m in APL
 v
 5.00 9.9700
v 9.97 25.2269

where the R function t()transposes the specified matrix.

A.5 Data Frames
A data frame in R can be thought of in APL terms as a nested matrix with named columns
and rows (from some perspectives, a data frame can also be thought of as an APL
namespace containing multiple vectors of the same shape). The columns of the data frame
can each be of a different type if required. A data frame often has a names attribute and a
row.names attribute specifying the names to use for the columns and rows of the data
frame respectively.

A data frame can be created using a number of vectors and the R function data.frame.
First, the vectors need to be defined:

> x<-rnorm(5)
> y<-rnorm(5)
> z<-rnorm(5)
> f<-c("one", "two", "one", "two", "two")

These vectors can then be used to define the data frame:

> df<-data.frame(alpha=x,
+ beta=y,
+ gamma=z,
+ class=f)

If a definition is started directly in R rather than in an editor, then the + sign is
automatically placed at the start of each line following an opening parenthesis to indicate
that the definition is not complete. This continues until a closing parenthesis is used and
the command is syntactically complete.

R's print function can be used to display the data frame in the R Console with row and
column headings:

 R Interface Guide 30

> print(df)
 alpha beta gamma class
1 1.7217649 -0.9721264 1.4846160 one
2 -0.5215173 0.2765905 -0.8196067 two
3 -0.9969889 1.5453845 0.4106044 one
4 -0.8293706 -1.5338251 -0.2861393 two
5 -0.4570327 0.6544644 1.4526609 two

Basic statistical information can be obtained using R's summary function:

> summary(df)
 alpha beta gamma class
 Min. :-0.9970 Min. :-1.533825 Min. :-0.8196 one:2
 1st Qu.:-0.8294 1st Qu.:-0.972126 1st Qu.:-0.2861 two:3
 Median :-0.5215 Median : 0.276591 Median : 0.4106
 Mean :-0.2166 Mean :-0.005902 Mean : 0.4484
 3rd Qu.:-0.4570 3rd Qu.: 0.654464 3rd Qu.: 1.4527
 Max. : 1.7218 Max. : 1.545384 Max. : 1.4846

Columns within a data frame can be accessed and processed individually by specifying the
name of the data frame and the name of the column of interest, separated by the $ sign:

> sum(df$beta)
[1] -0.02951211

> tapply(df$beta,df$class,mean)
 one two
 0.2866290 -0.2009234

The R linear model function lm turns a data frame into a fitted model object ready for
general functions to be applied:

> lm(beta~alpha, data=df)

Call:
lm(formula = beta ~ alpha, data = df)

Coefficients:
(Intercept) alpha
 -0.1118 -0.4889

A.6 Indexes
As in APL, square brackets are used for indexing in R:

> v<-1:6 # v←⍳6 in APL

> v
[1] 1 2 3 4 5 6

> v[2]
[1] 2

R allows the use of logical variables for indexing purposes:

> v>3
[1] FALSE FALSE FALSE TRUE TRUE TRUE

> v[v>3] # (v>3)/v in APL
[1] 4 5 6

 R Interface Guide 31

For matrices and higher order arrays R uses the , character to separate the dimensions –
APL uses the ; character:

> m<-array(v,c(2,3))

> m
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> m[1,2]
[1] 3

As in APL, R allows the selection of a single row and column from a matrix:

> m[1,]
[1] 1 3 5

> m[,3]
[1] 5 6

An index can be specified using a vector:

> v[c(3,3,4,1)] # v[3 3 4 1] in APL
[1] 3 3 4 1

If an index is a matrix, then a vector of values is returned:

> v[array(c(3,3,4,1),c(2,2))] # v[,2 2⍴3 3 4 1] in APL
[1] 3 3 4 1

An array can also be used for indexing purposes:

> i<-array(c(1,1,2,3,1,3),dim=c(3,2))

> i
 [,1] [,2]
[1,] 1 3
[2,] 1 1
[3,] 2 3

> m[i] # m[↓i] in APL
[1] 5 1 6

This can be extended by using the index to assign replacement values:

> m[i]<-0 # m[↓i]←0 in APL

> m
 [,1] [,2] [,3]
[1,] 0 3 0
[2,] 2 4 0

A logical array can also be used to index a matrix (similar to applying a Boolean mask in
APL):

> m==0 # m=0 in APL
 [,1] [,2] [,3]

 R Interface Guide 32

[1,] TRUE FALSE TRUE
[2,] FALSE FALSE TRUE

> m[m==0]<-99

> m
 [,1] [,2] [,3]
[1,] 99 3 99
[2,] 2 4 99

A.7 Defined Functions
New functions are defined using the following R expression:

function_name<-function(args) expr

where:

• function_name is the name of the new function
• args is one or more arguments separated by the , character
• expr is the expression that defines the function

Simple functions can be defined on a single line (more complicated functions might require
multiple line definitions):

> foo<-function(x) x*3 # foo←{⍵×3} in APL

> foo(4)
[1] 12

> foo(5)
[1] 15

In R, default values can be set for some arguments. This is illustrated by the following
example, which calculates a probability density function for normal (Gaussian) distribution.
The equation for this is:

f(x, µ,σ) =
1

√2𝜋𝜋𝜋𝜋
𝑒𝑒−

(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2

In R this equation is implemented as:

> gauss<-function(x,mu=0,sd=1){
+ fx<-exp(-((x-mu)^2)/(2*sd^2))
+ fx/(sqrt(2*pi)*sd)
+}

Setting default values for µ and σ means that the function can be called with only x
specified:

> gauss(0)
[1] 0.3989423

> gauss(1.5)
[1] 0.1295176

The default value for an argument can be overridden either by specifying the value to use
for that argument using its position in the list of arguments:

 R Interface Guide 33

> gauss(0,0,3)
[1] 0.1329808

or by specifying the name of the argument that the value is for:

> gauss(0,sd=3)
[1] 0.1329808

 R Interface Guide 34

Appendix B References for R

The following links provide comprehensive information on the history, capabilities and
syntax of R:

• The R Project for Statistical Computing:
http://www.r-project.org/

• The Comprehensive R Archive Network:
http://cran.r-project.org/

• R Wiki:

http://rwiki.sciviews.org/doku.php

• Google's R Style Guide:
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html

http://www.r-project.org/
http://cran.r-project.org/
http://rwiki.sciviews.org/doku.php
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html

	1 About This Document
	1.1 Changes since version 1.0
	1.2 Limitations in RConnect 1.1

	2 Introduction
	3 A Sample RConnect Session
	4 Installation and Initialisation
	4.1 Prerequisites
	4.2 Adding R to the Microsoft Windows PATH environment variable
	4.3 Installing R and rscproxy
	4.4 Packages
	4.5 Running RConnect
	4.6 Accessing R's Documentation

	5 Transferring Data between APL and R
	5.1 Compatible R Arrays and Lists
	5.2 R Objects
	5.3 R data.frame objects
	5.4 Constructing R objects
	5.5 Letting R do the formatting

	6 RConnect Functions
	6.1 init
	6.2 save
	6.3 get
	6.4 put
	6.5 execute
	6.6 format

	7 More about RConnect Objects
	7.1 Robject and RDataframe
	7.1.1 Constructors
	7.1.2 The Value property
	7.1.3 The attributes property
	7.1.4 The attr property
	7.1.5 Changing Class
	7.2 Special Classes
	7.2.1 Renvr
	7.2.2 Rname
	7.2.3 Rcall
	7.2.4 Rexpr
	7.2.5 Rfunc

	8 Performance Tips
	Appendix A R for APLers
	A.1 Assignment and Vector Arithmetic
	A.2 Operators
	A.3 Arrays
	A.4 Functions on Arrays
	A.5 Data Frames
	A.6 Indexes
	A.7 Defined Functions

	Appendix B References for R

